Improved Uniformity Enforcement in Stochastic Discrimination
نویسندگان
چکیده
There are a variety of methods for inducing predictive systems from observed data. Many of these methods fall into the field of study of machine learning. Some of the most effective algorithms in this domain succeed by combining a number of distinct predictive elements to form what can be described as a type of committee. Well known examples of such algorithms are AdaBoost, bagging and random forests. Stochastic discrimination is a committee-forming algorithm that attempts to combine a large number of relatively simple predictive elements in an effort to achieve a high degree of accuracy. A key element of the success of this technique is that its coverage of the observed feature space should be uniform in nature. We introduce a new uniformity enforcement method, which on benchmark datasets, leads to greater predictive efficiency than the currently published method.
منابع مشابه
Stochastic Fuzzy Discrimination Information Measure Cost Function in Image Processing
A new cost function based on stochastic fuzzy discrimination information measure is introduced in this paper. Focusing on their significant parts, this cost function is used to find the optimal value of threshold for denoising image. It is, in fact, an extension of fuzzy entropy cost function by the present author. Multivariable normal distribution is used for creating focus on significant part...
متن کاملA Concrete Statistical Realization of Kleinberg’s Stochastic Discrimination for Pattern Recognition. Part I. Two-class Classification By
The method of stochastic discrimination (SD) introduced by Kleinberg is a new method in statistical pattern recognition. It works by producing many weak classifiers and then combining them to form a strong classifier. However, the strict mathematical assumptions in Kleinberg [The Annals of Statistics 24 (1996) 2319–2349] are rarely met in practice. This paper provides an applicable way to reali...
متن کاملSymmetries from Uniform Space Covering in Stochastic Discrimination
Studies on ensemble methods for classification suffer from the difficulty of modeling the complementary strengths of the components. Kleinberg’s theory of stochastic discrimination (SD) addresses this rigorously via mathematical notions of enrichment, uniformity, and projectability of a model ensemble. We explain these concepts via a very simple numerical example that captures the basic princip...
متن کاملA Numerical Example on the Principles of Stochastic Discrimination
Studies on ensemble methods for classification suffer from the difficulty of modeling the complementary strengths of the components. Kleinberg’s theory of stochastic discrimination (SD) addresses this rigorously via mathematical notions of enrichment, uniformity, and projectability of a model ensemble. We explain these concepts via a very simple numerical example that captures the basic princip...
متن کاملMortality prediction using SAPS II: an update for French intensive care units
INTRODUCTION The standardized mortality ratio (SMR) is commonly used for benchmarking intensive care units (ICUs). Available mortality prediction models are outdated and must be adapted to current populations of interest. The objective of this study was to improve the Simplified Acute Physiology Score (SAPS) II for mortality prediction in ICUs, thereby improving SMR estimates. METHOD A retros...
متن کامل